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The RSA Public Key Cryptosystem

> Invented by Rivest, Shamir and Adleman in 1977.

» Most businesses, banks, and even governments use RSA to
encrypt their private information.



RSA in a Nutshell

KEY GENERATION ALGORITHM
» Choose primes p, g

» Construct modulus N = pgq, and ¢(N) = (p—1)(g — 1)
> Set e, d such that d = e~! mod ¢(N)
» Public key: (N, e) and Private key: d

ENCRYPTION ALGORITHM: C = M€ mod N

DECRYPTION ALGORITHM: M = C9 mod N



Example
» Primes: p =653,q =877
» Then N = pg = 572681, ¢(N) = (p—1)(q — 1) = 571152

» Take Public Exponent e = 13
> Note 13 x 395413 =1 (mod 571152)

» Private exponent d = 395413

» Plaintext m = 12345
» Ciphertext ¢ = 123453 mod 572681 = 536754



Practical Example

Example

p = 846599862936164736402988177812099956013778770876315707836731563770
5880893839981848305923857095440391598629588811166856664047346930517527
891174871536167839

q = 121764346862040688467973181827710403396896519724618922933494273650
3033910096582171197571988374294918003138669675396892122967962313235346
8174200136260738213

N = 10308567936391526757875542896033316178883861174865735387244345263
7137208314161521669308869345882336991188745907630491004512656603926295
3518502967942206721243236328408403417100233192004322468033366480788753
9303481101449158308722791555032457532325542013658355061619621556208246
3591629130621212947471071208931707

e =216 41 = 65537, and

d = 101956309423526004076893177133219940094766772585504692321252302615
1120238295258506352584280960487541607315458593878388760777253827593350
0788233193317652234750616708162985718345962209115090210535366860135950
1135207708372912478251719497009548072271475262211661830196811724409660
406447291034092315494830924578345



Factorization Methods

“The problem of distinguishing prime
numbers from composites, and of resolving
composite numbers into their prime
factors, is one of the most important and
useful in all of arithmetic.”

— Carl Friedrich Gauss

>

Pollard’s p — 1 algorithm (1974)

v

Dixon’s Random Squares Algorithm (1981)

v

Quadratic Sieve (QS): Pomerance (1981)

v

Williams' p + 1 method (1982)

v

Elliptic Curve Method (ECM): H. W. Lenstra (1987)

v

Number Field Sieve (NFS): A. K. Lenstra et al.(1993)



Lattice

LATTICE BASED ROOT FINDING OF
POLYNOMIALS



Finding roots of a polynomial

UNIVARIATE INTEGER POLYNOMIAL
» f(x) € Z[x] with root xp € Z efficient methods available

MULTIVARIATE INTEGER POLYNOMIAL
» f(x,y) € Z[x, y] with root (xo,y0) € Z X Z not efficient

UNIVARIATE MODULAR POLYNOMIAL
» f(x) € Zn[x] with root xo € Zp not efficient

HILBERT’S TENTH PROBLEM: 1900



Finding roots of a polynomial

UNIVARIATE INTEGER POLYNOMIAL
» f(x) € Z[x] with root xp € Z efficient methods available

MULTIVARIATE INTEGER POLYNOMIAL
» f(x,y) € Z[x, y] with root (xo,y0) € Z X Z not efficient

UNIVARIATE MODULAR POLYNOMIAL
» f(x) € Zn[x] with root xo € Zp not efficient

HILBERT’S TENTH PROBLEM: 1900

Lattice based techniques help in some cases.



Lattice

Definition (Lattice)

Let vq,...,vqa € Z™ (m > n) be n linearly independent vectors. A
lattice L spanned by {vi,...,vn} is the set of all integer linear
combinations of vy,...,v,. Thatis,

n
L:{VGva:Za;v;withaieZ}.

i=1

The determinant of L is defined as det(L) = H ||vi*]|.
i=1

Example

Consider two vectors vi = (1,2),va = (3,4). The lattice L
generated by v, v is

L={veEZ?|v=ayvy + ayvp with aj,ap € Z}.



LLL Algorithm
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Devised by A. Lenstra, H. Lenstra and L. Lovasz (Mathematische
Annalen 1982)

Main goal: Reduce a lattice basis in a certain way to produce a
‘short (bounded)’ and ‘nearly orthogonal’ basis called the
LLL-reduced basis.



Connecting LLL to Root finding

The clue was provided by Nick Howgrave-Graham in 1997.

Theorem

Let h(x) € Z[x] be an integer polynomial with n monomials. Let
for a positive integer m,

Nm
h(xo) =0 (mod N™) with |xp| < X and [|h(xX)|| < NG
n

Then, h(xp) = 0 holds over integers.



Connecting LLL to Root finding

MAIN IDEA:

We can transform a modular polynomial h(x) to an integer
polynomial while preserving the root xp, subject to certain size
constraints.

1
WE NEED ROUGHLY det(L)» < N™.



RSA Variants

Multi Prime RSA

v

v

Twin RSA

Common Prime RSA

v

Dual RSA

v

Prime Power RSA

v

CRT-RSA

v



Common Prime RSA



Common Prime RSA

> Primes: p—1=2gaand g—1=2gb
» RSA modulus: N = pg

» ed =1 mod 2gab



Common Prime RSA

> Primes: p—1=2gaand g—1=2gb
» RSA modulus: N = pg

» ed =1 mod 2gab

EXISTING RESULTS:
» Hinek: CT-RSA 2006
» Jochemsz and May: Asiacrypt 2006



Sarkar and Maitra: DCC 2013

1. Let g = N7 and p, g be of same bit size
2. e~ N7 and d ~ NP

Theorem
N can be factored in polynomial time if

N2

2
~
+2.

-

b <



Proof

» We have ed = 1 mod 2gab.
> So ed =1+ 2kgab.
> ed =1+ kle=)le=l),

» 2edg =2g+k(p—1)(g—1) = 2edg =2g+k(N+1—p—q)

» Root (xo,¥0) = (2g + k(1 — p — q), k) of the polynomial
f(x,y)=x+yN in Zg

» Note g divides N—1asp=1+2gaand g=1+2gb

> letc=N-1



Proof

For integers m, t > 0, we define following sets of polynomials:

m—i _max{0,t—i}

gi(xy) = Xfi(xy)e"c
where i=0,....m, j=m—|.

NOTE THAT gi(xo, ¥0) = 0 mod (e™g?).

Dimension of the lattice Lisw =m-+1



Proof

» Condition: det(L) < e™' g™

m2+m t2+t

» Here det(L) = (XYe) 2 c 2




Dual RSA



Dual RSA

Proposed by H.-M. Sun, M.-E. Wu, W.-C. Ting, and M.J. Hinek
[IEEE-IT, August 2007]

» Two different RSA moduli Ny = p1g1, No = pogo

» Same pair of keys e and d such that
ed = 1 mod ¢(Ny)

ed =1 mod ¢(Ns)

Applications: blind signatures, authentication/secrecy etc.



Dual CRT-RSA

Motivation: CRT-RSA is faster than RSA

Sun et al. proposed a CRT variant of Dual RSA.

Dual CRT-RSA:
» Two different RSA moduli Ny = p1g1, No = pogo
» Same set of keys e and dp, dg such that



Cryptanalysis of Dual CRT-RSA

SARKAR AND MAITRA: DCC 2013

Theorem
Let Ny, Ny be the public moduli of Dual CRT-RSA and suppose

e = N?, dp, dg < N°.
Then, for a > %, one can factor Ny, N> in poly(log N) time when

11—«
2

o<

— €

for some arbitrarily small positive number € > 0.



Sketch of the proof

Note the following:
» ed, =1mod (p1 — 1) & ed, — 1+ kp, = kp, p1
» edg=1mod (q1 — 1) & edg — 1+ kg, = kg1

Combining these two relations:

(edp =1+ kp,) (edqg — 1+ kqy) = kp kg N1



Sketch of the proof

This in turn gives us:
e’y1 + eya + y3 = (N1 — 1)kp, kg,

e’y + eya + y5 = (No — 1)kp, kg,

where we have

n= dpdq,

ya = dp(kp, = 1)+ dg(kgy — 1), y3 = 1 = kp, — kqy,
va = dp(kp, — 1) + dg(kg, — 1), y5 = 1 — kp, — kg,



Sketch of the proof

Consider the polynomial
f(X,Y,Z)=e’X+eY +Z

to obtain:
f(y1,y2,y3) =0 (mod Ny — 1)

f(y1,ya,y5) =0 (mod N, — 1)



Sketch of the proof

Combine the two modular equations to obtain G such that

G(y1,y2,y3,Y4,¥5) =0 (mod (Ny — 1)(Np — 1))

where G(x1, x2, X3, X4, X5) = x1 + baxa + b3xz + baxq + bsxs

We prove that one can find the root (y1, y2, y3, ya, y5) of G if

11—«

o<
2

— €



Prime Power RSA



Prime Power RSA

» RSA modulus N is of the form N = p"q where r > 2

» An electronic cash scheme using the modulus N = p?q :
Fujioka, Okamoto and Miyaguchi (Eurocrypt 1991).

> ﬁlzl fraction of MSBs of p = polynomial time factorization:
Boneh, Durfee and Howgrave-Graham (Crypto 1999)



Prime Power RSA

> d < N%0: Takagi (Crypto 1998)
> d < NOHP or d < NUF: May (PKC 2004)

> When r =2, Nmx{5:3} — N5 ~ NO22,



Sarkar: WCC 2013

Theorem

Let N = p?q be an RSA modulus. Let the public exponent e and
private exponent d satisfies ed = 1 mod ¢(N). Then N can be
factored in polynomial time if d < N%39.



Proof Idea

v

ed =1 mod ¢(N) where N = p2q.

» So we can write ed = 1 + k(N — p? — pg + p).

v

We want to find the root (xo, Yo, 20) = (k, p, q) of the
polynomial fo(x,y,z) =14+ x(N — y?> —yz +y).

v

Note y3zo = N



Proof Idea

For integers m, a, t > 0, we define following polynomials

gjk(y,2) = Xy IT(xy,2)
where i=0,....m, j=1,....m—i, k=j,j+1,j+2and
gi,O,k(X:y’ Z) = ykzafei(x»yﬂ Z)

where i=0,...,m k=0,...,t.



General Case

Recall

» N=p'q

» ed=1mod pi(p—1)(g—1)

For integers m, a, t > 0, we define following polynomials

gi,j,k(X7Y1z) = Xj)’kzj“fei(xvyyz)
where i=0,....m, j=1,....m—i, k=j,j+1,...,j+2r—2and
gi,O,k(X:y’ Z) = ykzafei(x»yv Z)

where i=0,...,m k=0,...,t.



General Case

2
r 0 max {(r+r1)27 (%) }
2 0.395 0.222
3 0.410 0.250
4 0.437 0.360
5 0.464 0.444
6 0.489 0.510
7 0.512 0.562
8 0.532 0.605
9 0.549 0.640
10 0.565 0.669

Table: Numerical upper bound of ¢ for different values of r



Implicit Factorization



Explicit factorization

RIVEST AND SHAMIR (Eurocrypt 1985)
N can be factored given 2/3 of the LSBs of a prime

1001010100 10100100101010010011

COPPERSMITH (Eurocrypt 1996)
N can be factored given 1/2 of the MSBs of a prime

100101010010100100101010010011

BONEH ET AL. (Asiacrypt 1998)
N can be factored given 1/2 of the LSBs of a prime

100101010010100100101010010011

HERRMANN AND MAY (Asiacrypt 2008)
N can be factored given a random subset of the bits
(small contiguous blocks) in one of the primes

— ——
100101010010100100101010010011



Implicit Factorization

In PKC 2009, May and Ritzenhofen introduced Implicit
Factorization

SCENARIO:

» Consider two integers Ny, N> such that Ny = p1g1 and
N2 = p2g2 where p1, g1, p2, g2 are primes.

» Suppose we know that pp, po share a few bits from LSB side,
but we do not know the shared bits.

QUESTION:

How many bits do p1, p> need to share for efficiently factoring
Ny, No?



Sarkar and Maitra: IEEE-IT 2011

Theorem

Let g1,qo,...,qx = N®, and consider that ~v; logy, N many MSBs
and v logy N many LSBs of p1, ..., px are the same. Also define
f=l-a—-m—".

Then, one can factor N1, N, ..., Ny in poly{log N, exp(k)} if

5 < C(a, k), for k > 2,
1-3a+a?, fork=2,

with the constraint 2a + 3 < 1, where

c k(1 —2a) + k(5o — 2) — 200+ 1 — /k2(1 — a2) + 2k(a2 — 1) + 1
(o k) = K2 —3k+2 '




Comparison with the existing works

k
’ ‘ (1 — a)logy N, alogy N

Bitsize of p;, q;

|

[ No. of shared LSBs May et al. in p; “

No. of shared LSBs (our) in p;

| Theory T Expt. [ LD | Time || Theory [ Expt. [ LD [ Time

3 750, 250 375 378 3 <1 352 367 56 41.92
*3 700, 300 450 452 3 <1 416 431 56 59.58
*3 650, 350 525 527 3 <1 478 499 56 74.54
# 3 600, 400 600 - - - 539 562 56 106.87
*4 750, 250 334 336 4 <1 320 334 65 32.87
* 4 700, 300 400 402 4 <1 380 400 65 38.17
*4 650, 350 467 469 4 <1 439 471 65 39.18
*4 600, 400 534 535 4 <1 497 528 65 65.15

Table: For 1000 bit N, theoretical and experimental data of the number
of shared LSBs in May et al. and shared LSBs in our case. (Time in

seconds)




CRT-RSA



The CRT-RSA Cryptosystem

» Improves the decryption efficiency of RSA, 4 folds!
> Invented by Quisquater and Couvreur in 1982.

» The most used variant of RSA in practice.



CRT-RSA: Faster approach for decryption

» Two decryption exponents (d,, d;) where

d, =d mod (p—1) and dg = d mod (g — 1).

» To decrypt the ciphertext C, one needs

G = C% mod p and G = C% mod q.

Calculating xY:
» ¢/, = [log, y| many squares

» w, = wt(bin(y)) many multiplications



CRT-RSA: Faster through low Hamming weight

» Lim and Lee (SAC 1996) and later Galbraith, Heneghan and
McKee (ACISP 2005): dp, dy with low Hamming weight.

» Maitra and Sarkar (CT-RSA 2010): large low weight factors in
dp, dg.



Galbraith, Heneghan and McKee (ACISP 2005)

Input: le,ln, Uk
Output: p,d,
1 [Choose an /. bit odd integer e;

2 |Choose random ¢ bit integer k, coprime to e;
3 [Find odd integer d, such that d, = e~ ! mod Kp;

4p_1+edp 1

(fe,f/\/,fd,fk) = (176, 1024, 338,2) WITH Wy, = Wq, = 38

Comparison in decryption: 26% Faster



Sarkar and Maitra (CHES 2012)

The Tool for Cryptanalysis:

» Henecka, May and Meurer: Correcting Errors in RSA Private
Keys (Crypto 2010).

» Three equations:
N =pq,ed, =1+ kp(p—1),edg =1+ kq(q —1)

» We have:
1. g=p N mod 2?

2. dp=(1+ kp(p—1)) e mod 22
3. dg = (1+ kg(g—1)) e~ ! mod 22



The Tool for Cryptanalysis

>

>

Wq,, Wq, are taken significantly smaller than the random case.

Take the all zero bit string as error-incorporated (noisy)
presentation of d,, d.

If the error rate is significantly small (< 8%), one can apply
the error correcting algorithm of Henecka et al to recover the
secret key.

Time complexity of the error-correction heuristic: 7.

The strategy attacks the schemes of SAC 1996 and ACISP
2005 in 7O(e) time. For our scheme in CT-RSA 2010, it is
70(e%).



Experimental results: parameters d,, d,

[

6 0.08 0.09 0.10 0.11 0.12 0.13
Suc. prob. 0.59 0.27 0.14 0.04 - -
Time (sec.) 307.00 294.81 272.72 265.66 - -
Suc. prob. | 068 | 049 [ 025 | 018 | 008 | 0.02 |
[ Time (sec.) | 8741 | 8447 | 8018 | 7457 | 79.33 | 76.04 |

LM ET AL (SAC 1996)
> Uy =T768,{q, =384, wy, =30,e =257,= 0 ~ = = 0.078

> (y = 768,04, =377, wq, = 45,e = 257; = § = % ~0.12
P

GALBRAITH ET AL (ACISP 2005)
(Ce, la,, Uk,) = (176,338,2), wy, = 38 = 6 ~ 555 ~ 0.11

MAITRA ET AL (CT-RSA 2010) ¢ ~ 0.08



Summary of the talk

In this talk, we have

>

>

RSA Cryptosystem

Studied Lattice based techniques for finding root(s) of
polynomials

Common Prime RSA
Dual RSA

Prime Powe RSA
Implicit Factorization

CRT-RSA
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